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Novel anti-biofouling light-
curable fluoride varnish containing
2-methacryloyloxyethyl
e« phosphorylcholine to prevent
et enamel demineralization

Jae-Sung Kwon(®?, Myung-Jin Lee?, Ji-Young Kim?2, Dohyun Kim3, Jeong-Hyun Ryu'*,
Sungil Jang*?®, Kwang-Mahn Kim?, Chung-Ju Hwang? & Sung-Hwan Choi®?

. We evaluated the efficacy of light-curable fluoride varnish (LCFV) that contains 2-methacryloyloxyethyl

. phosphorylcholine (MPC) in terms of anti-biofouling properties and prevention of tooth enamel
demineralization. MPC was mixed with and incorporated into LCFV at 0 (control), 1.5, 3.0, 5.0, 10.0,

: 20.0, and 40.0 weight percentage (wt%). Addition of high wt% of MPC resulted in increased film

. thickness and decreased the degree of conversion, indicating loss of the advantageous properties of

: LCFV. Addition of 1.5, 3, or 5 wt% MPC significantly reduced the amount of bovine serum albumin

. adsorbed from a solution and proteins adsorbed from brain heart infusion medium compared to

. the control (P < 0.001). A similar pattern was observed for bacterial adhesion: significantly less

. Streptococcus mutans cells adhered on the surface of LCFV with 1.5, 3, or 5wt% MPC (P < 0.001)

. than on the control, and similar results were obtained for Actinomyces naeslundii and Streptococcus

. sanguinis adherence to LCFV with 3 wt% MPC. Finally, bacterial adhesion, surface microhardness

. loss, and the depth of demineralization were substantially lower on bovine tooth enamel surface

. coated with LCFV containing 3 wt% of MPC than in the control treatment (0 wt% MPC). Therefore, this

. novel LCFV containing a low concentration of MPC (e.g., 3 wt%) would be effective in anti-biofouling

© while maintaining the important advantageous features of light-curable fluoride in preventing
demineralization.

: Caries or white spots are highly prevalent in the permanent teeth of children and adolescents who do not regu-

* larly brush their teeth, especially when brushing is hampered by factors such as orthodontic fixed appliances!?.

. These lesions are mainly due to the demineralization of hard tissue by lactic acid produced in deposits of bacterial

. biofilm, including saliva proteins and food residues that are not removed from the tooth surface by brushing®.
To minimize such erosive tooth loss, several preventive strategies have been employed, among which fluoride
application has been popular choice*.

Topical fluoride applications in the form of fluoride varnish have been used extensively and proven effective
in the prevention of demineralization'; however, repeated application is required for conventional fluoride var-
nish to retain its anti-caries effect®. Hence, light-curable fluoride varnish (LCFV), which has been shown to be

. advantageous in terms of longevity and sustainability”®, has been increasingly used. Several studies have shown
. that LCFV effectively prevents enamel demineralization on a longer term than conventional fluoride varnish”*.
: Moreover, the occurrence of white spot lesions during comprehensive orthodontic treatment can be prevented
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Light-Curable Fluoride Varnish | 2-Methacryloyloxyethyl
Groups (LCFV, Clinpro XT Varnish), wt% | Phosphorylcholine (MPC), wt%
Control 100 0
1.5% MPC 98.5 1.5
3% MPC 97.0 3.0
5% MPC 95.0 5.0
10% MPC 90.0 10.0
20% MPC 80.0 20.0
40% MPC 60.0 40.0

Table 1. Compositions of the tested materials.

by the use of LCFV?. Still, fluoride varnish has a limitation in that it does not fully protect the underlying dental
tissue, while fluoride alone cannot effectively prevent enamel demineralization!®!!.

Zwitterionic materials are a group of materials that possess both anionic and cationic groups such that their
overall charge is neutral'?. Because of these properties, these materials have superior anti-biofouling effects. One
of the most commonly used zwitterionic materials is 2-methacryloyloxyethyl phosphorylcholine (MPC), which is
a methacrylate that harbours a phospholipid polar group in the side chain, providing a highly hydrophilic surface
that can resist protein absorption and bacterial adhesion'®. Various biomaterials based on MPC polymers have
been investigated'*!%, and recent studies have attempted to apply this material in dentistry, e.g., through incor-
poration into composite materials'>!®, in orthodontic cements'’, and in dentin bonding agents'®!*. However, no
study has been reported on the incorporation of MPC in fluoride varnishes for the prevention of dental caries. If
MPC can be successfully applied in fluoride varnishes, especially durable LCFV, it will be possible to effectively
prevent dental plaque formation and dental caries including white spots, especially in high-risk children and
adolescents.

Therefore, in the current study, we attempted to synthesize LCFV containing MPC with the aim to combine
the anti-biofouling activity of MPC with the important enamel demineralization-preventive feature of LCFV,
without impairing the critical mechanical properties of LCFVs. Using experiments in vitro and ex vivo, we evalu-
ated the protein-repellent and bacterial adhesion-preventive properties of MPC-incorporated LCFV. In addition,
the clinical application of the material was evaluated by assessing its effect in terms of prevention of enamel dem-
ineralization in bovine teeth. We hypothesized that the combination of MPC and LCFV would achieve superior
protein-repellent effect, prevention of bacterial adhesion, and prevention of enamel demineralization, compared
to LCFV without MPC.

Methods

Preparation of MPC-incorporated LCFV. Commercially available MPC powder (Sigma-Aldrich, St.
Louis, MO, USA) and LCFV (Clinpro XT Varnish; 3M ESPE, St. Paul, MN, USA) were used in this study. MPC
powder was mixed into LCFV at various weight percentages (1.5, 3.0, 5.0, 10.0, 20.0, and 40.0 wt%), while LCFV
without MPC was used as a control. The compositions of the experimental and control materials are summarized
in Table 1. To evaluate the degree of conversion (DC), protein adsorption, and bacterial analyses, prepared sam-
ples were placed in a mould with diameter of 15 mm and a thickness of 2 mm to form disc-shaped specimens. To
assess film thickness and for application to bovine teeth, samples were placed in a syringe and 0.05mL of sample
was ejected on glass plate or bovine tooth, respectively. All samples were then polymerized using a LED light-cur-
ing unit (Elipar S10; 3M ESPE Co., Seefeld, Germany).

Degree of conversion. The DC was evaluated by Fourier-transform infrared spectroscopy (FTIR;
Vertex 70; Bruker Optik, Ettlingen, Germany). The spectrometer was coupled to a horizontal attenuated total
reflectance (ATR) device consisting of a 2-mm-diameter diamond crystal (Platinum ATR-QL; Bruker Optik,
Baden-Wiirttemberg, Germany). The diameter of the measured surface was 800 um, the wave number range of
the spectrum was 1400-2000 cm ™!, and the FTIR spectra were recorded at a rate of 2 scans per second and at a
resolution of 4cm™". To determine the percentage of unreacted double bonds, the DC was assessed as the var-
iation of the absorbance intensities’ peak area ratio of the methacrylate carbon double bond (peak 1634 cm™?)
and those of an internal standard (aromatic carbon double bond; peak at 1608 cm™') during polymerization, in
relation to the uncured material®.

Protein adsorption. Protein adsorption was tested out according to a previously established method*’.
Briefly, all disc-shaped samples were immersed in fresh phosphate-buffered saline (PBS; Gibco, Grand Island, N,
USA) at room temperature for 1 h. Then, each sample was immersed in a protein solution of either bovine serum
albumin (BSA; Pierce Biotechnology, Rockford, IL, USA) or brain heart infusion (BHI; Difco, Sparks, MD, USA)
broth, both at a concentration of 2 mg of protein per mL of PBS and a volume of 100 L. After 4h of incubation
under sterile humid conditions at 37°C in 5% CO,, any non-adherent protein was removed by washing twice
with PBS. The adherent protein was then reacted with 200 pL of micro-bicinchoninic acid (Micro BCA™ Protein
Assay Kit; Pierce Biotechnology) followed by incubation at 37 °C for 30 min. The amount of adsorbed protein was
quantified by measuring the absorbance at 562 nm using a micro-plate reader (Epoch; BioTek Instruments, VT,
USA).
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Bacterial analyses. Bacterial analyses were carried out using Streptococcus mutans (ATCC 25175),
Streptococcus sanguinis (ATCC 10556), and Actinomyces naeslundii (KCOM 1942; Korean Collection for Oral
Microbiology (KCOM, Gwangju, Korea)). Streptococci were cultured in Brain Heart Infusion broth (Becton
Dickinson and Co., Sparks, MD, USA). A. naeslundii was cultured in BHI broth supplemented with 0.5% yeast
extract (Becton Dickinson and Co.), 0.0001% resazurin (Sigma-Aldrich, St. Louis, MO, USA), 0.05% Hemin
(Sigma-Aldrich), 0.05% of cysteine (Sigma-Aldrich) and 0.02% vitamin K (Sigma-Aldrich) under anaerobic con-
dition in an Anaeropack (Mitsubishi Gas Chemical, Tokyo, Japan).

Following the preparation of disc-shaped specimens, 1 mL of bacterial suspension (1 x 10® cells/mL) was
placed on each disc in a 24-well plate and incubated at 37 °C for 24 h. After incubation, the samples were gently
washed twice with PBS to remove any non-adherent bacteria.

For microscopic examination of attached bacteria, bacteria on the samples were fixed with 2%
glutaraldehyde-paraformaldehyde in 0.1 M PBS for at least 30 min, at room temperature. The samples were
post-fixed with 1% OsO, dissolved in 0.1 M PBS for 2h, dehydrated in an ascending gradual series of ethanol,
treated with isoamyl acetate, and subjected to critical point drying (LEICA EM CPD300; Leica, Wien, Austria).
Then, the discs were coated with Pt (5nm) by using an ion coater (ACE600; Leica) and examined and photo-
graphed using a scanning electron microscopy (FE-SEM; Merin, Carl Zeiss, Oberkochen, Germany) at 2kV.

To evaluate bacterial colony forming units (CFU), adherent bacteria were harvested in 1 mL BHI by sonication
(SH-2100; Saehan Ultrasonic, Seoul, Korea) for 5min. Of this bacterial suspension, 100 uL was spread onto an
agar plate and incubated at 37°C for 24 h. Then, the total number of colonies was counted.

The viability of adherent bacteria was examined by staining using a live/dead bacterial viability kit (Molecular
Probes, Eugene, OR, USA), according to the manufacturer’s protocols. Equal volumes of Syto 9 dye and propid-
ium iodide, which stain live and dead bacteria, respectively, from the kit were mixed thoroughly. Of the mixture,
3 uL was added to 1 mL of bacterial suspension prepared as described above. After 15 min of incubation at room
temperature in the dark, the stained samples were observed under a confocal laser microscope (LSM700; Carl
Zeiss, Thornwood, NY, USA). Live bacteria appeared green while dead bacteria appeared red.

Application to bovine tooth and evaluation of enamel surface demineralization. The experi-
ment was conducted according to a previously established method?, with modifications. Following the fixation
of a bovine tooth in a resin block, the surface was polished to expose the enamel. After etching the enamel with
20% phosphoric acid (Reliance Ortho Prod. Inc., IL, USA) for 15 s and rinsing with water, 0% MPC-LCFV (con-
trol) and 3% MPC-LCFV was applied to each half of the exposed enamel followed by light curing. Coated bovine
teeth were then placed in each well of a 24-well plate and exposed to BHI culture medium supplemented with 2%
sucrose (1,492.5 pL/well) and 7.5 pL of S. mutans inoculum (~1 x 108 cells/mL). The plate was incubated at 37°C
for 48 h to simulate enamel demineralization by the acid produced by the bacteria®!. The bovine tooth was stained
with Trace Disclosing Solution (Young Dental Manufacturing, MO, USA) and examined under FE-SEM using
the procedures described above. In addition, the percentage of Vickers microhardness loss of each sample was
measured, using a micro-indentation hardness tester (DMH-2; Matsuzawa Seiki, Japan), in compliance with the
following expression: 100 x (initial surface microhardness value - final surface microhardness value)/initial surface
microhardness value, where the ‘initial and final surface microhardness values’ were the surface microhardness
values before and after immersion into the bacterial solution, as an indication of enamel demineralization.

Demineralization study by polarized light microscopy. Demineralization of bovine teeth following
application of 0% MPC-LCFV (control) and 3% MPC-LCFV was analysed as reported®?, with some modification.
First, bovine teeth were cut in slices of 100-150 um thickness using a low-speed diamond wheel saw (Diamond
Cutter RB205 Metsaw, R&B Co., Daejeon, Korea). Then, we applied a commercial surface sealant/polish
(BisCover, Bisco Dental, Schaumburg, IL, USA) on the buccolingual area of the sectioned specimen. The enamel
surfaces were then etched with 20% phosphoric acid for 15s and rinsed with water, followed by the application
of 0% MPC-LCFV (control) and 3% MPC-LCFV with light curing. Specimens without the application of any
varnish were also included. Bovine teeth specimens with or without LCFV were placed in each well of a 24-well
plate and were exposed to BHI medium supplemented with 2% sucrose (1492.5uL/well) and 7.5uL of S. mutans
inoculum (~1 x 108 cells/mL). The plate was incubated at 37 °C for 14 days to simulate enamel demineralization
by the acid produced by the bacteria®!. The growth medium was replaced every 48 h to support biofilm regrowth.
All samples were observed under a polarized light microscope (Olympus BX41, Olympus, Tokyo, Japan) at a
magnification of 40 x before and after demineralization. Images were captured with a camera mounted on the
microscope and were analysed using Leica Application Suite, version 4.12.0 (Leica Microsystems, Switzerland)

Statistical analysis. For all statistical analyses, IBM SPSS software, version 23.0 (IBM Korea Inc., Seoul,
Korea) for Windows was used, with data from at least three independent experiments. The results obtained for the
control and experimental materials were analysed by one-way analysis of variance (ANOVA) followed by Tukey’s
test. Two groups were compared using the independent # test. P < 0.05 was considered statistically significant.

Results

Film thickness and degree of conversion. The film thickness of 0-5% MPC-LCFV was 7-11 um,
whereas that of 20% and 40% MPC-LCFV was more than double the thickness of the control (0% MPC-LCFV)
(P<0.001, Fig. 1A). In terms of DC, except for 40% MPC, none of the materials showed a significant difference.
40% MPC-LCFV showed a 42% decrease in DC compared to the control (P=0.014, Fig. 1B). Therefore, 40%
MPC-LCFV was not used in further experiments.

Protein adsorption. The amount of adsorbed BSA was significantly lower on 1.5%, 3%, 5%, and 10%
MPC-LCFV (range, 0.22-0.30) than on the control LCFV and 20% MPC-LCFV (range, 0.39-0.43) (P < 0.001,
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Figure 1. Comparison of the mean film thickness (A) and degree of conversion (B) between groups. Different
letters above bars indicate significant differences. *P < 0.05, ¥**P < 0.001 for comparisons between LCFV with
different concentrations of MPC.

(A) (B)
— 5 *okk o] Hkok .
o ° @
c —_
e T =) T
a1 T 59 ¥ i
o J_ o e b b
b= b 32 4 T T
@ ab T -2 -
2 .31 ab - = @ J_
& 2 T T 2E 4 a
o T T 8 - a a T
L ] L e 2 =
° oL 2 T
2 £%
c S E
3 .1 o9 44
E 5 & 1
-0 T T T T T T -0 T T T T T T
Control  1.5% 3% 5% 10% 20% Control  1.5% 3% 5% 10% 20%
MPC MPC MPC MPC MPC MPC MPC MPC MPC MPC

Figure 2. Comparison of the optical density (OD) of adsorbed bovine serum albumin (BSA) (A) and protein
adsorbed form brain heart infusion (BHI) medium (B) between LCFV with different concentrations of MPC.
Different letters above bars indicate significant differences. ***P < 0.001 for comparisons between LCFV with
different concentrations of MPC.

Fig. 2A). Figure 2B shows that the amount of proteins adsorbed from BHI medium was significantly lower in
1.5%, 3%, and 5% MPC-LCFV (range, 0.21-0.24) than in the control group (0.39 £ 0.02) (P < 0.001). There
was no significant difference between control and 10% MPC-LCFV (0.37 #0.05), whereas 20% MPC-LCFV
(0.50 £ 0.06) showed significantly higher protein adsorption. Therefore, 20% MPC-LCFV was not used in further
experiments.

Bacterial analyses. FE-SEM images clearly indicated that less S. mutans cells adhered to the surface of 1.5%,
3%, 5%, and 10% MPC-LCFV than on the control (Fig. 3A). When analysed quantitatively, 1.5-10% MPC-LCFV
showed significantly lower CFU counts than the control (P < 0.001, Fig. 3B). Further, the CFU counts for 1.5%,
3%, and 5% MPC-LCFV were significantly lower than that for 10% MPC-LCFV and were about 1/20 of the
control. There was no statistically significant difference between the 1.5%, 3%, and 5% MPC-LCFYV, but 3%
MPC-LCFV showed the lowest count. These findings were confirmed by viability staining results, where less live
bacteria (visible as green in Fig. 3) were attached to 3% MPC-LCFV than on the control (Fig. 3C). However, there
was no evidence of dead bacteria (visible as red in Fig. 3) on both control and 3% MPC-LCFV.

Similar results were obtained for A. naeslundii and S. sanguinis. The CFU counts for 3% MPC-LCFV were
significantly lower than that in the control (Fig. 4B,D, P <0.001 and P=0.021, respectively), and viability staining
revealed that less live bacteria were attached to 3% MPC-LCFV than on the control for both species (Fig. 4A,C).
We observed some dead A. naeslundii and S. sanguinis cells on the control, while no dead bacteria were detected
on 3% MPC-LCFV (Fig. 4A,C).

Application to bovine tooth and evaluation of enamel surface microhardness loss.  To evaluate
the clinical application potential of LCFV containing MPC, 0% and 3% MPC-LCFV was applied on each side of
a bovine tooth, which was then exposed to appropriate culture medium containing bacteria for 48 h. The appli-
cation of Trace Disclosing Solution resulted in bright red coloration on the side where control LCFV was applied
(left), while a faded red coloration was evident on the side where 3% MPC-LCFV was applied (right) (Fig. 5A).
This was confirmed by FE-SEM (Fig. 5B), where a clear difference in the number of bacteria adherent to the
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Figure 3. Qualitative scanning electron images of S. mutans cells attached to the surfaces of control and
experimental groups at a magnification of 5,000 x (A). Scale bar is 2 um. Colony-forming unit (CFU) counts
derived from S. mutans cells attached on the surfaces of control and MPC-LCFV (B). Different letters above
bars indicate significant differences. ***P < 0.001 for comparisons between LCFV with different concentrations
of MPC. Representative live/dead staining images of S. mutans cells attached on the surfaces of control and
experimental groups (C). Scale bar is 100 ym.
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Figure 4. Representative live/dead staining images of A. naeslundii (A) and S. sanguinis (C) cells attached on
the surfaces of control and 3% MPC-LCFV. Scale bar is 100 um. CFU counts derived from A. naeslundii (B)
and S. sanguinis (D) cells attached on the surfaces of control and 3% MPC-LCEV. *P < 0.05, ***P < 0.001 for
comparisons between LCFV with 3% MPC-LCFV.
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Figure 5. Representative photograph of a bovine tooth to which control and 3% MPC-LCFV was applied on
each side and that was exposed to BHI culture medium supplemented with 2% sucrose and bacterial inoculum.
Trace Disclosing Solution was applied to the sample (A). Representative scanning electron image of bacteria
attached on the surfaces of the control and 3% MPC-LCFV at a magnification of 100x (B). Scale bar is 40 um.
Comparison of enamel surface microhardness loss (%) after exposure to a bacterial culture between the control
and 3% MPC-LCFV (C). ***P < 0.001 for comparisons between the control and 3% MPC-LCFV before and
after exposure a bacterial culture.

surface was evident between the two sides. The Vickers microhardness showed no significant difference between
control and 3% MPC-LCFV before exposure to a bacterial solution. However, the hardness loss following expo-
sure to the bacterial solution was significantly (P < 0.001) higher for control LCFV (20.38 + 38.47%) than for 3%
MPC-LCEV (0.30 +39.08%) (Fig. 5C).

Demineralization study by polarized light microscopy. Following 14 days of immersion in acidic
solution resulting from the fermentation of sucrose by S. mutans, specimens without varnish showed dramatic
demineralization of the enamel as indicated by the presence of dark brown areas. However, 3% MPC-LCFV
effectively protected against demineralization, whereas 0% MPC-LCFV (control) showed a slight increase in the
area of demineralized tissue as compared to 3% MPC-LCFV (Fig. 6). Image analysis revealed that the average
depth of demineralization was significantly lower for 0% MPC-LCFV (46.44 & 44.88 pm) and 3% MPC-LCFV
(23.62 £23.03 pm) than for the sample without varnish (260.46 £+ 97.51 um) (P < 0.001).

Discussion

To date, in the dental field, MPC has been applied mainly to composite materials ,in orthodontic cements'’,
and in dentin bonding agents'®', alone or in combination with antibacterial materials, to block the attach-
ment of bacteria to the resin and to kill already-deposited bacteria, mainly to resist recurrent caries caused by
micro-leakage of tooth and resin restorations. However, application of zwitterionic materials such as MPC in
fluoride varnishes as in the present study would allow primary prevention of dental caries in high-caries-risk chil-
dren and adolescents. To our knowledge, this study is the first to investigate the effects of MPC incorporation into
LCFV on anti-biofouling and enamel demineralization-inhibitory effects. Moreover, to ensure clinical usefulness
of the results of this study, using experiments in vitro and ex vivo, we sought to find optimal MPC content ratios
that allowed maximum anti-biofouling effects without impairing the critical mechanical properties of LCFVs.

The effectiveness and advantages of LCFV have been shown in various previous studies’™?, and to maintain
these advantages upon addition of MPC, two important factors determining LCFV effectiveness were considered;
film thickness and DC. It was evident that 20% MPC-LCFV had a film thickness more than twice that of the con-
trol LCFV, while the degree of polymerization was decreased by 42% for 40% MPC-LCFV when compared with
the control. Therefore, it was evident that such high MPC contents would cause discomfort in the patient and may
require a higher number of varnish applications, as polymerization is inhibited’.

Previous studies have demonstrated that the addition of MPC results in biocompatible and hydrophilic bio-
medical polymers, and hydrophilic material surfaces have been shown to be more resistant to protein absorption
than hydrophobic surfaces'. In this study, we assessed protein adsorption of BSA, which is considered a protein
with a quite general structure, and a mix of proteins that are present in bacterial BHI culture medium. First, it
was noted that the amount of adsorbed BSA was significantly lower for 1.5%, 3%, 5%, and 10% MPC-LCFV than
for the control and 20% MPC-LCFV. A similar pattern was observed for the amount of proteins adsorbed from
BHI medium. MPC is a methacrylate with a phospholipid polar group in the side chain'®. Phospholipid mole-
cules generally consist of hydrophilic heads that are attracted to water and hydrophobic tails that are repelled
by water?*. Thus, in water, the MPC phospholipids will orient themselves into a bilayer in which the non-polar
tails face the inner area of the bilayer and the polar heads face outward to interact with the water, which results
in its highly hydrophilic properties'*. When MPC polymer is exposed to a protein solution, the unique structure
of MPC would allow a large amount of free water to be present around the phosphorylcholine group, whereas
there would be no bound water in the hydrated MPC®. As the presence of bound water would cause protein
adsorption, whereas the presence of free water would repel protein absorption, the addition of MPC to LCFV
results in protein-repellent properties®. Previous studies have demonstrated that copolymerization of MPC with
resin-like polymers resulted in MPC immobilization and caused long-lasting and durable prevention of protein
attachment®®?’. However, high contents of MPC, such as 20%, resulted in significantly higher protein adsorption

15,16,23
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Figure 6. Representative polarized light microscopy images of a bovine tooth before and 14 days after exposure
to BHI culture medium supplemented with 2% sucrose and bacterial inoculum. Specimens were treated with
0% MPC-LCEFV (control), 3% MPC-LCFV, or no varnish. Scale bar is 500 um.

in our study. Such a phenomenon has been also reported in previous studies that considered the addition of MPC
into dental composite resin®, polymethyl methacrylate?, and polyethylene?. It has been reported that despite
the increase in protein-repellent efficacy as MPC concentration increased, the entire polymerization system
began to show gelation at higher concentrations of MPC, which resulted in marked decrease in protein-repellent
efficacy*>?.

Dental plaque is formed when microorganisms aggregate on the tooth surface®. The initial step in this process
is the absorption of salivary-derived proteins as a salivary pellicle that can mediate bacterial attachment and bio-
film formation®!. Hence, the protein-repellent properties of MPC-incorporated LCFV would result in resistance
to bacterial adhesion, which were analysed using three different bacterial sepcies S. mutans, A. naeslundii and S.
sanguinis, which are pathogenic bacteria commonly found in the oral cavity and involved in the early stage of oral
biofilm formation3?23. Indeed, less bacteria adhered on the surfaces of all MPC-LCFV than on control LCFV as
indicated by microscopy and CFU counting, for all three species. For S. mutans, the result was consistent with the
findings on protein adsorption, as the CFU counts increased with the incorporation of 10% MPC. Finally, it was
evident that bacteria were prevented from attaching to the surface rather than being killed on the surface, as there
was no evidence of dead bacteria on 3% MPC-LCFV. As dead bacteria were not detected on the surfaces treated
with LCFV containing MPC in the live/dead cell assay, the MPC anti-biofouling effect seems to mainly depend on
nonspecific protein repellence, not on antimicrobial properties. This implies that the risk for toxic effects on nor-
mal tissues in the oral cavity is low and that zwitterionic materials such as MPC can be safely applied in children
and adolescents. Incorporation of antibacterial agents such as chlorhexidine into the material may lead to toxic
effects or induce population shifts in the oral microbiota®.
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When we evaluated the clinical application potential of MPC-LCFV, both the Trace Disclosing Solution assay
and FE-SEM clearly indicated that less bacteria adhered to 3% MPC-LCFV than to the control-treated enamel
after 48 h of exposure to a bacterial culture. More importantly, surface microhardness loss was significantly
increased for control-treated enamel, whereas enamel coated with 3% MPC-LCFV maintained microhardness
after exposure to the bacterial culture. This result was confirmed by assessing demineralization by polarized light
microscopy. LCFV itself has a demineralization-preventive effect as indicated by previous studies’. However,
the effect was improved with addition of MPC into LCFV, as the depth of demineralized tissue was smaller on
3% MPC-LCFV than on 0% MPC-LCFV. It has been suggested that, despite the advantages of fluoride varnishes,
they have low acid resistance and consequently do not fully protect underlying dental tissues against deminerali-
zation'!. In the current study, demineralization was assessed only for 14 days, and in artificial environment. It can
be expected that under longer demineralization caused by a highly acidic environment, the difference between
3% and 0% MPC-LCFV might become even more pronounced. Further, the use of fluoride varnish alone cannot
prevent enamel demineralization'?. This study clearly indicated that the addition of an appropriate amount of
MPC to fluoride varnish results in a synergetic effect in terms of bacterial repellent activity and consequent pre-
vention of demineralization.

As we used in-vitro and ex-vivo experiments, complications in the oral environment, including salivary flow
and the presence of food debris, were not evaluated and should be considered in future in-vivo or clinical stud-
ies. However, the present study showed that the addition of an appropriate amount of MPC into LCFV resulted
in protein-repellent properties that consequently reduced bacterial attachment. The addition of 3 wt% of MPC
polymer was shown to be optimal in terms of both providing anti-biofouling properties and maintaining the
advantageous features of LCFV. Finally, the application of LCFV with 3wt% MPC polymer effectively prevented
enamel demineralization in a bovine tooth model.
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